中国科学院 | 大气所 | 网站地图 | 加入收藏
首 页  | | | 论文论著 | | 科学传播 | English  
  学术报告
学术报告
学术报告 您当前所在的位置: 首页 > 学术报告 > 学术报告
Advancing theoretical understanding and numerical modeling of the MJO
来源:LASG    访问次数:    报告时间:2018-7-5
【报告人】        Prof. Bin WANG
【报告人单位】University of Hawaii,USA
【报告时间】    2018年7月5日(星期四)10:00
【报告地点】    科研楼101会议室
【报告简介】    

Understanding the origin and propagation of the Madden-Julian Oscillation (MJO) has eluded scientists for decades. We have recently advanced a general theoretical model for essential dynamics of MJO:The trio-interaction among (convective and radiative) heating, moisture, and (wave and boundary layer) dynamics. The model can accommodate variety of simplified convective parametrization schemes. The major existing theoretical models proposed thus far are special or simplified forms of the general theoretical model.

With the general theoretical model, we show that the trio-interaction mode reproduces robust large-scale characteristics of the observed MJO, including the coupled Kelvin-Rossby wave structure, slow eastward propagation (~5 m/s) over warm pool, the preferred planetary (zonal) scale, the boundary layer (BL) low pressure preceding major convection, and amplification/decay over warm/cold sea surface temperature (SST) regions. The trio-interaction theory elaborates important roles of four convective feedback processes, i.e., the BL convergence feedback, moisture feedback, wave feedback, and cloud-radiation feedback.

The theory uniquely reveals (a) the dependence of MJO structure on the form of heating schemes and (b) the dependence of MJO propagation on its zonal structural asymmetry. These results find firm support from observations and GCM simulations. Analysis of the 24 GCM’s simulations confirms that the MJO propagation speed depends on zonal structural asymmetry of the MJO. The models that simulate better three-dimensional dynamic and thermodynamic structures of MJO generally reproduce better eastward propagations. Based on the trio-interaction theory and GCM model results, we developed a suite of dynamics-oriented diagnostics that provide discrimination and assessment of MJO simulations. The new dynamics-oriented diagnostics help to evaluate whether a model produces eastward propagating MJO for the right reasons. This evaluation identifies a number of shortcomings in representing dynamical and heating processes relevant to the MJO simulation and reveals potential sources of the shortcomings.

The trio-interaction theory suggests that MJO propagation and instability are sensitive to cumulus parameterization schemes and MJO simulation may be improved if the shallow and congestus cloud heating and their interaction with BL moisture convergence can be enhanced in the GCMs. Using newly developed NUIST ESM, we confirmed the above assertion.

 
© 1997-2010 大气科学和地球流体力学数值模拟国家重点实验室 版权所有 京ICP备06004370号
北京9804信箱LASG 邮编:100029 传真:82995172